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The observation that mutations in tumor suppressor genes
can have haploinsufficient, as well as gain of function and
dominant negative, phenotypes has caused a reevaluation
of the ‘two-hit’ model of tumor suppressor inactivation.
Here we examine the history of haploinsufficiency and
tumor suppressors in order to understand the origin of
the ‘two-hit’ dogma. The two-hit model of tumor sup-
pressor gene inactivation was derived from mathematical
modeling of cancer incidence. Subsequent interpretations
implied that tumor suppressors were recessive, requiring
mutations in both alleles. This model has provided a useful
conceptual framework for three decades of research on the
genetics and biology of tumor suppressor genes. Recently it
has become clear that mutations in tumor suppressor genes
are not always completely recessive. Haploinsufficiency
occurs when one allele is insufficient to confer the full
functionality produced from two wild-type alleles. Hap-
loinsufficiency, however, is not an absolute property. It can
be partial or complete and can vary depending on tissue
type, other epistatic interactions, and environmental fac-
tors. Inaddition to simplequantitativedifferences (oneallele
versus two alleles), gene mutations can have qualitative
differences, creating gain of function or dominant negative
effects that can be difficult to distinguish from dosage-
dependence. Like mutations in many other genes, tumor
suppressor gene mutations can be haploinsufficient, dom-
inant negative or gain of function in addition to recessive.
Thus, under certain circumstances, one hit may be suffi-
cient for inactivation. In addition, the phenotypic pen-
etrance of these mutations can vary depending on the
nature of the mutation itself, the genetic background, the
tissuetype,environmentalfactorsandothervariables.Incor-
porating these new findings into existing models of the
clonal evolution will be a challenge for the future.

Defining tumor suppressor genes

The categorization of ‘cancer genes’ into dominant-acting
oncogenes and recessive tumor suppressors is rooted in

historical context. The first ‘cancer genes’ identified were
primarily derived from cancer-causing viruses and were
found to transform cells in a dominant fashion. These genes
became known as oncogenes due to their ability to drive
oncogenesis. Evidence for so-called ‘antioncogenes’ or tumor
suppressors was less forthcoming. Early experiments with
somatic cell hybridization had suggested that tumor suppressor
genes existed and were recessive, that is tumor suppressor
genes must be completely inactivated for malignancy to
occur. In 1969, a series of somatic cell hybrid fusion experi-
ments demonstrated that A9 cells suppressed the tumorigeni-
city of malignant cells (1), indicating that a factor responsible
for the suppression of malignancy likely existed in the A9 cells
and that this factor was lost in malignant cells. Subsequent
work by Al Knudson among others both predicted the exist-
ence of human tumor suppressors and led to the ‘two-hit’
model of tumorigenesis (2,3).
In a seminal analysis comparing unilateral and bilateral

retinoblastoma patients, Knudson first delineated his hypo-
thesis that the dominantly inherited form of retinoblastoma
and the nonhereditary form are mechanistically linked (2). In
the hereditary form, he postulated that one mutation (the first
‘hit’) is inherited while a second mutation occurs in somatic
cells significantly accelerating the onset of retinoblastoma and
often leading to bilateral forms of the disease. In the nonhered-
itary form, two mutations must occur somatically prior to
retinoblastoma inititiation. Following the cloning of the ret-
inoblastoma gene, RB, in 1986, Knudson’s elegant and unify-
ing prediction appeared to be born out (4). Loss of
heterozygosity (LOH) and mutation analysis of RB revealed
biallelic mutations in retinoblastoma as well as other tumor
types and demonstrated that both hereditary and nonhereditary
retinoblastomas sustain mutation or loss of both alleles of RB.
This precedent has developed into one of the most dominant
paradigms in cancer research leading to the tenet that tumor
suppressor genes are recessive at the cellular level, requiring
complete loss of function in order to reveal a phenotype.
Conversely, germline mutations of tumor suppressor genes
function dominantly at the organismic level, predisposing the
carrier to early onset of disease by supplying one of the
required two hits at birth.
In the years that followed, it became clear that RB was only

the first example of an ever-expanding class of cancer gene,
the tumor suppressor. In 1969, Li and Fraumeni described a
dominantly inherited familial syndrome of cancer including
rhabdomyosarcoma, osteosarcoma and breast cancer in female
carriers (5). By analogy with RB, Li-Fraumeni syndrome was
later ascribed to mutation in the TP53 gene and p53 was
reinterpreted as a tumor suppressor rather than the oncogene
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number of tandem repeats.
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that it was thought to be when originally identified in its
mutant form (6,7). Biallelic mutations in TP53 were frequently
(though not always) found in tumors, solidifying the belief
that tumor suppressor genes require two hits for inactivation
(Figure 1). The conventional wisdom that tumor suppressor
genes are recessive, then, is based on historical context, not
a priori logic.
The two-hit model, however, is difficult to reconcile with

another major paradigm of cancer research, Nowell’s hypo-
thesis of clonal evolution (8). If loss of one tumor suppressor
allele truly has no phenotype, then both alleles would need
to be lost within a single cell before any selective advantage
could occur. However, the spontaneous mutation rate is very
low in cells, and accumulation of multiple mutations is
required to transform normal cells to a fully malignant
tumor. Given the rate of cancer, Loeb has argued that cancer
cells must have a mutator phenotype to supply the requisite
number of mutations within an individual’s lifetime (9). If the
loss of one tumor suppressor allele had no selective advantage
it would be even more difficult to account for the disparity
between known mutation rates and human cancer incidence.
As discussed next, tumor suppressor genes are not a unique
class of genes with respect to their genetics and, like many
other genes involved in metabolism and development, can be
haploinsufficient, showing dramatic phenotypes with loss of
only a single allele.

Origins and definition of haploinsufficiency

In diploid organisms, with the exception of genes on the X and
Y chromosomes and imprinted genes, two functional copies
(alleles) of all genes are present. Nevertheless, for many genes,
a single functional allele is sufficient to maintain normal
operations. Some genes, and certain functions of other genes,
however, are very sensitive to gene dosage levels. Haploin-
sufficiency represents that special circumstance in which one
working allele of a gene is insufficient to accomplish the
normal activity of that gene product in the cell. Drosophila
geneticists described the concept of haploinsufficiency as early

as the turn of the last century. ‘Minute’ mutations were first
identified as dominant alleles that are lethal when homo-
zygous. These minute mutations in many instances turned
out to be chromosomal deficiencies. In the case of the haplo-
IV minute in which the entire fourth chromosome is missing,
it was found that a haploid complement of chromosome IV
genes resulted in tardy development, reduced fertility and
heavy mortality (10–12). In Genetics, a seminal journal of
the early genetics field, the term ‘haplo-insufficiency’ was
first applied by Curt Stern in his study of dosage effects on
the cubitus interruptus allele of Drosophila (13) and was not
used again until 1956 in describing one of Bridges’ original
deficiencies, M33a (14). Recently, however, there has been
increasing interest in haploinsufficiency and the terms ‘haplo-
insufficiency’ and ‘haploinsufficiency’ have appeared in more
than 102 journal articles published in the journal Genetics
alone during the last decade while at least 984 references in
PubMed list ‘haploinsufficiency’ as a keyword (http://www.
ncbi.nlm.nih.gov, August 11, 2005).

Haploinsufficient tumor suppressor genes

Despite the long history of haploinsufficiency in genetics,
translation of this concept to tumor suppressor genes has
been slow. The delay is likely due to the lack of experimental
evidence as well as a perceived conflict between haploinsuffi-
ciency (one allele is not enough) and the original definition
of a tumor suppressor gene (two hits required). In traditional
tumor suppressor genetics, inherited loss of one tumor sup-
pressor allele leads to accelerated tumorigenesis due to the
need to inactivate only one remaining allele. Haploinsufficient
tumor suppressor genes also lead to accelerated tumorigenesis,
however, without the requirement for inherited mutation of
one allele (Figure 1).
In 1998, Fero et al. (15) reported that the cyclin-dependent

kinase inhibitor p27kip1 is haploinsufficient for tumor suppres-
sion and Venkatachalam et al. (16) showed that p53 could
suppress tumor development in a gene dosage-dependent
manner. Similarly, Tang et al. (17) reported that Tgfb is

Fig. 1. Inactivation of Tumor Suppressor Genes. Classic tumor suppressor genes are inactivated via ‘two hits’. In the case of inherited cancer susceptibility,
one of these ‘hits’ is acquired in the germline with the second ‘hit’ being acquired somatically during tumor development. Haploinsufficient tumor suppressor
genes are compromised by a single ‘hit’, obviating the need to sustain ‘two hits’ during the course of tumor development.
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haploinsufficient for tumor suppression, although its mechan-
ism of haploinsufficiency is fundamentally different as Tgfb is
a secreted protein and thus, functions in a non-cell-autono-
mous fashion.
In 1996, three labs independently created p27 knockout mice

and reported similar phenotypes (18–20). p27�/� mice have an
increased growth rate and adults are 20 to 30% larger than
wild-type littermates. The increased size of the p27�/� animals
was due to increased cellularity as opposed to increased cell
size, pointing to a key role of p27 in controlling growth in all
tissue compartments in vivo and providing the first clue to its
gene dosage sensitivity. Interestingly, tissues from the p27þ/�

mice expressed roughly 50% the normal level of p27 protein
and these mice showed an intermediate growth rate. The inter-
mediate phenotype of the heterozygous animals indicated that
control of proliferation and even adult animal size is extremely
sensitive to the level of p27 protein. In addition, p27-deficient
mice exhibited hyperplasia of the pituitary intermediate lobe
and nearly 100% of p27�/� mice (on a 129/Sv genetic back-
ground) eventually succumbed as a result of benign pituitary
adenomas (18). p27�/� mice have not demonstrated increased
susceptibility to spontaneous tumor development in other
tissues.
There is, however, an abundance of evidence from human

cancers indicating that reduced p27 protein is associated
with more aggressive tumors and reduced patient survival
(reviewed in ref. 21). As cancer is a multistep process requir-
ing several genetic events, a lack of spontaneous tumor pre-
disposition in p27-deficient mice was insufficient evidence to
rule out a tumor-suppressing role for p27. Other genetic events
might be required to elicit latent tumor suppressing effects
by p27. Indeed when p27-deficient mice were challenged
with either the point mutagen ENU, or the broad spectrum
mutagenic agent ionizing radiation, they showed tumor
predisposition in multiple epithelial tissues (15). In a cohort
challenged with a single dose of 1 Gy radiation, the median
tumor-free survival was reduced from more than 70 weeks in
wild-type control mice to 40 weeks in p27�/� mice due to
increased tumor multiplicity in diverse sites including small
and large intestine, lung, ovary, uterus and adrenal gland.
p27þ/� mice showed an intermediate susceptibility, both in
tumor-free survival and tumor multiplicity. Genetic and bio-
chemical analysis of tumors from the p27þ/� mice revealed
that the wild-type p27 allele was not mutated and protein
expression was not silenced in p27þ/� tumors. Similarly,
when p27-deficient mice were challenged with the carcinogen
1,2-dimethylhydrazine (DMH), an alkylating agent that
induces adenomas and adenocarcinomas specifically in the
colon, overall tumor-free survival was significantly reduced
in p27�/� mice and to an intermediate extent in p27þ/� mice
relative to wild-type littermate controls (22). The incidence of
colorectal adenocarcinoma as well as the ratio of adenocar-
cinomas to adenomas and the histological aggressiveness of
tumor behavior were all significantly increased in p27-defi-
cient mice. While p27þ/� mice exhibited a colorectal tumor
latency and histologically aggressive tumor behavior interme-
diate between p27�/� and p27þ/þ mice, the remaining wild-
type allele was retained and continued to be expressed in
DMH-induced colorectal tumors from p27þ/� mice.
These results differed from those reported previously in

other murine models of tumor suppressor knockouts. For
example, tumors from Rbþ/� (23,24) and Apcþ/� (25) mice
all show frequent mutation or loss of the remaining wild-type

allele, consistent with Knudson’s two-hit model (2). In these
cases the tumor suppressor appears recessive at the cellular
level: complete loss of both alleles provides a much greater
selective advantage than loss of a single allele. Even in these
cases, however, the possibility that the loss of one allele con-
fers a selective advantage perhaps early in tumor development
cannot be excluded. The genetic inactivation of murine Rb and
Apc genes mimics that seen in human tumors where biallelic
mutations in these tumor suppressor genes are observed. In
contrast, biallelic mutations in p27 are rarely seen in either
human or murine tumors. The murine data unequivocally show
a strong selective advantage to tumor development with loss of
a single p27 allele. The data indicate that inhibition of growth
(18) and tumor development (15) is highly sensitive to the
gene dosage of p27. Thus, halving the normal amount of p27
is sufficient to result in unchecked growth, suggesting that
there may not be a threshold for its activity but rather a
dose–response continuum.
In another well-known example, Trp53 is inactivated via

traditional ‘two-hit’ kinetics under certain circumstances and
in certain tissues, but in other cases shows clear evidence for
haploinsufficiency. Early evidence for haploinsufficient beha-
vior of Trp53 at the cellular level was observed by Bouffler
et al. (26). In this study, p53þ/� mice showed a significantly
higher number of spontaneous chromosome aberrations as
compared to p53þ/þ mice, with the incidence being interme-
diate between that of the p53þ/þ and p53�/� mice. Similarly,
Clarke et al. (27) reported that apoptosis is partially impaired
in p53þ/� mice. Venkatachalam et al. (16) later confirmed
the haploinsufficiency of Trp53 by analysis of tumors from
p53þ/�mice. In a study of 217 p53þ/�mice, roughly half of all
tumors retained the wild-type p53 allele. In contrast to p53þ/�

tumors that lose the remaining wild-type allele, those tumors
with wild-type allele retention expressed a functional p53
protein that preserved the ability to induce apoptosis following
irradiation, to induce p21 and Mdm2 expression, and to repress
PCNA expression.
Since 1998, a burgeoning number of tumor suppressor genes

have shown evidence of haploinsufficiency (Table I). One of
the recent examples with the best understood mechanism of
haploinsufficiency is Nkx3.1. Nkx3.1 encodes a homeobox
protein that is expressed specifically in the luminal epithelium
of the prostate. Nkx3.1þ/� mice develop prostatic hyperplasia
without loss of the remaining wild-type allele (28). Microarray
analysis identified a number of Nkx3.1 target genes that
represented a range of responses to Nkx3.1 gene dosage (29).
Some genes, e.g. probasin were relatively insensitive to gene
dosage with 70 to 80% of normal expression in Nkx3.1 hem-
izygotes whereas expression of other genes such as intelectin
was lost in Nkx3.1 hemizygotes. In between the two extremes
were a number of genes whose expression in Nkx3.1 hemizy-
gotes ranged from 16 to 55% of wild-type expression. The
authors argued for a stochastic model of gene expression in
which Nkx3.1 gene dosage affects the probability of target gene
expression in any given cell. In the case of Nkx3.1, evidence of
haploinsufficiency depended largely on the specific phenotype
studied (i.e. probasin expression versus intelectin expression),
indicating the difficulty inherent in identifying a multifunc-
tional tumor suppressor as haploinsufficient or not.
In most cases, demonstration of the haploinsufficiency of a

tumor suppressor gene has only been possible in the more
rigorously controlled genetics of mouse models. One excep-
tion is the CBFA2/AML1 tumor suppressor. Song et al. (30)
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Table I. Haploinsufficient tumor suppressor genes

Gene Inherited human
cancer association

Sporadic human cancer association Haploinsufficient phenotype

Anx7 ? Down-regulated in sporadic
prostate, glioblastoma multiforme
and hormone receptor negative breast
cancers (71–73)

Multiple tissues in mouse: lymphoma,
hepatocellular carcinoma, and lung
adenoma among others (74)

Apc Mutated in FAP coli
syndrome (75,76)

Mutated in sporadic colorectal, gastric,
pancreatic, thyroid and ovarian
cancers (77)

Tumorigenicity of cell lines with activated
v-Ha-ras in nude mice (78)

Arf Mutated in familial melanoma
and neural tumors (79)

Mutated in multiple sporadic cancer types
(ARF-specific in T-cell acute lymphoblastic
leukemia and metastatic melanoma) (80–82);
Promoter hypermethylation in oral squamous
cell carcinoma (83)

Human melanoma (84); murine DMBA/
TPA-induced papilloma (85)

Atm�� Mutated in Ataxia
telangiectasia (86); Increased
susceptibility to breast cancer
in heterozygotes (reviewed
in ref. 87)

Mutated in several forms of leukemia and
lymphoma (reviewed in ref. 88); Rarely
mutated, but frequently down-regulated
in sporadic breast cancer (89–91)

Increased sensitivity to sublethal doses
of ionizing radiation as determined
by lifespan and premature
greying (92)

Atr Mutated in Seckel syndrome
(reviewed in ref. 93)

Mutated in microsatellite unstable
endometrial and gastrointestinal
cancer (94,95)

Mlh1-induced murine thymic lymphoma and
intestinal adenocarcinomas (96)

Beclin1 ? Down-regulated in sporadic breast
cancer (97,98)

Murine lymphoma, hepatocellular
carcinoma and lung adenocarcinoma
(99,100)

Bim ? Frequently down-regulated with
accompanying LOH in mantle cell
lymphomas (101), but otherwise few
published mutation screens to date

Em-Myc-induced murine B-cell leukemia (102)

Blm Mutated in Blooms
syndrome (103)

Mutated in sporadic microsatellite unstable
gastrointestinal cancer (104,105)

Murine leukemia virus-induced lymphoma,
Apcmin-induced intestinal adenoma (106)

BRCA1�� Mutated in familial breast and
ovarian cancer syndrome
(107,108)

Rarely mutated, but frequently
down-regulated in sporadic breast
(reviewed in ref. 109), ovarian
(reviewed in ref. 110) and
pancreatic (111) cancers

Radiosensitivy and maintenance of genome
stability in human lymphoblastoid (112) and
fibroblast (113) lines

BRCA2�� Mutated in familial breast and
ovarian cancer syndrome
(114,115)

Rarely mutated in sporadic cancers
analyzed to date (116–120)

Radiosensitivy and maintenance of genome
stability in human lymphoblastoid (112) and
fibroblast (113) lines

Bub3�� ? Frequent LOH in osteosarcoma (121), but
rarely mutated in sporadic cancers
analyzed to date (122,123)

Maintenance of genome stability in MEFs,
but no detectable difference in tumor
formation in vivo (124)

CBFA2/AML1/
RUNX1

Mutated in familial platelet
disorder with predisposition
to acute myelogenous
leukemia (30)

Mutated in sporadic acute myelogenous
leukemia (125,126)

Human acute myelogenous leukemia (30)

Cdh1 (E-cad) Mutated in familial gastric
cancer (127)

Mutated in sporadic diffuse-type gastric and
lobular breast carcinoma (128); Frequently
down-regulated in sporadic epithelial
cancers (reviewed in ref. 129)

Apc1638N-induced murine adenoma and
adenocarcinoma (130)

Cdkn1a
(p21Waf1/Cip1)��

Genetic variants associated with
increased risk of breast cancer
and sarcoma (131), lung
cancer (132,133), skin, head
and neck cancer (134,135) and
cervical cancer (136)

Decreased expression in hepatocellular
carcinoma (137), but rarely mutated in
cancers analyzed to date (137–141)

Epithelial tissues in mouse: harderian gland
adenocarcinoma and granulosa cell
ovarian tumor (142)

Cdkn1b (p27Kip1) ? Rarely mutated, but frequently
down-regulated in multiple sporadic
cancer types (reviewed in ref. 46)

Multiple epithelial tissues in mouse: intestinal
adenoma and adenocarcinoma, lung adenoma,
granulosa cell ovarian tumor, endometrial
adenoma and adenocarcinoma, angiosarcoma,
adrenal adenoma, pituitary adenoma,
thymic lymphoma (15)

Cdkn2c (p18Ink4c) ? Rarely mutated, but down-regulated in
some sporadic cancers (143–145)

Murine DMN-induced lung adenocarcinoma
and liver hemangiosarcoma (146)

Chk1�� ? Mutated in microsatellite unstable
endometrial and gastrointestinal
cancer (95,147)

Maintenance of genome stability in normal
murine mammary glands (148)

Dmp1 ? Few published mutation screens to date Em-Myc-induced murine lymphoma (149)
Fbxw7 (Cdc4) ? Mutated in sporadic endometrial (150),

pancreatic (151) and colorectal (152)
cancers

Multiple tissues in mouse: lung
adenocarcinoma, hepatocarcinoma,
cholangiocarcinoma, granulose cell tumor,
haemangiosarcoma, fibrosarcoma,
thymic lymphoma (153)
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Table I. Continued

Gene Inherited human
cancer association

Sporadic human cancer association Haploinsufficient phenotype

Fen1 ? Rarely mutated in sporadic cancers
analyzed to date (154,155)

Apc1638N-induced murine adenoma and
adenocarcinoma (156)

H2AX ? Rarely mutated, but frequent LOH
in B-cell lymphoma (157,158)

Murine thymic lymphoma, sarcoma and
leukemia (159)

Lig4 Mutated in Lig4 syndrome
(reviewed in ref. 93); Genetic
variants associated with
increased risk of breast
cancer (160), multiple
myeloma (161) and lung
cancer (162)

Rarely mutated in sporadic cancers
analyzed to date (163)

Murine soft-tissue sarcomas in
ink4a/arf�/� mice (164)

Lkb1 Mutated in Peutz-Jeghers
syndrome (165,166)

Mutated in sporadic lung, pancreatic and
biliary cancers, but rarely mutated in
other sporadic cancers associated with
Peutz-Jeghers syndrome (167–171)

Murine gastric adenoma, intestinal
adenoma (172)

Mad2�� ? Frequently down-regulated in hepatocellular
carcinoma (173), but rarely mutated in
sporadic cancers analyzed to date
(123,174,175)

Maintenance of genome stability in
mouse embryonic fibroblasts (176)

Mlhl�� Mutated in hereditary
non-polyposis coli cancer
(HNPCC) syndrome (177,178)

Mutated in sporadic microsatellite
unstable colorectal cancer (179,180);
Promoter hypermethylation in sporadic
microsatellite unstable colorectal (181),
gastric (182), and head and neck
cancers (183) as well as melanoma (184)
and retinoblastoma (185)

Mutation frequency in Mgmt�/�

fibroblasts treated with alkylating
agents (186)

Msh2 Mutated in hereditary
non-polyposis coli cancer
(HNPCC) syndrome (187)

Mutated in sporadic microsatellite unstable
colorectal cancer (179,180,188)

Multiple tissues in mouse: lung
adenoma, liver adenoma, mammary
adenoma, uterine adenoma,
hemangiosarcoma (189);
Sister chromatid exchange in
MNNG-treated MEFs (190) and
oxidative damage in irradiated
MEFs (191)

Mus81 ? Few published mutation screens to date Murine thymic lymphoma, sarcoma,
breast carcinoma, ovarian
carcinoma (192)

Nf1 Mutated in Neurofibromatosis
type 1 (193)

Mutated in sporadic colon
adenocarcinoma (194),
myelodisplastic syndrome (194), and
astrocytoma (194,195), as well as
glioblastoma, ependymoma and primitive
neuroectodermal tumors (195)

Non-cell-autonomous action in mast
cells surrounding murine
neurofibroma (196)

Nkx3.1 (NKX3A) ? Rarely mutated, but frequently
down-regulated in sporadic
testicular germ cell cancer and
metastatic prostate cancer (197–199)

Murine prostatic intraepithelial
neoplasia (29)

Plk4 ? Few published mutation screens to date Murine hepatocellular carcinoma and
lung adenocarcinoma (200)

Prkar1a Mutated in Carney complex,
a familial multiple neoplasia
syndrome (201,202)

Frequent down-regulation and LOH in
sporadic thyroid, adrenal, ovarian and colon
cancers, but rarely mutated in sporadic
cancers analyzed to date
(reviewed in ref. 203)

Murine sarcomas and hepatocellular
carcinomas (204); Human eyelid
myxoma in Carney complex (205)

Ptch Mutated in nevoid basal cell
carcinoma syndrome (206,207)

Mutated in sporadic medulloblastoma
(208–211)

Murine medulloblastoma (212)

Pten Mutated in several rare autosomal
dominant hamartomatous syndromes
including Cowden syndrome (213)

Mutated in multiple sporadic cancers
(reviewed in ref. 214)

Murine TRAMP-induced prostate
adenocarcinoma (215) and murine
prostatic intraepithelial neoplasia (216)

Rb�� Mutated in familial
retinoblastoma (4)

Mutated in multiple sporadic cancers
including retinoblastoma (217),
small cell lung (218,219), osteosarcoma (220)
and ductal pancreas (221)

Marker maintenance in murine
embryonic stem cells (222)

Ribosomal Protein
Genes (e.g. L35,
L37a, RPS19
and S8)

RPS19, a human ribosomal protein
gene, is mutated in familial
Diamond-Blackfan anemia with
predisposition to leukemia
(evidence of haploinsufficiency
in some families) (223,224)

Few published mutation screens to date Multiple tissues in zebrafish:
malignant peripheral nerve sheath
tumor, lymphoma, gut adenocarcinoma,
pancreatic ductal carcinoma (225)

Smad4/Dpc4 Mutated in familial juvenile
polyposis (226)

Mutated in sporadic colon and
pancreatic cancers (227–229)

Murine gastric adenoma (230)
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were able to demonstrate heterozygous missense mutations of
CBFA2 segregate with familial platelet disorder with predis-
position to acute myelogenous leukemia in four different pedi-
grees. In the leukemic cells from these patients, no somatic
mutations in the coding sequence of the wild-type allele were
identified and no evidence for deletion of the wild-type allele
was observed. Further, the CBFA2 protein was expressed in
leukemic cells and 100% of metaphases from the leukemic
bone marrow contained the karyotypic marker for the
chromosome carrying CBFA2. Apart from such exceptions,
evidence for the existence of haploinsufficent tumor suppress-
ors in humans has also been suggested by cell culture experi-
ments. In chromosome transfer studies with breast cancer cell
lines it was determined that a locus on the short arm of chro-
mosome 8, a site of frequent LOH in human breast cancers,
also behaves consistently with a haploinsufficient mechanism
of tumor suppression (31). The researchers transferred
chromosome 8 into breast cancer cell lines in which only one
allele was present for all 8p microsatellite markers analyzed.
In all cases, the presence of two full copies of chromosome
8p was incompatible with cell growth and in at least one case
the donor chromosome 8 was retained while the recipient
chromosome 8 was lost, as opposed to the expectation for
‘two-hit’ tumor suppression. This is similar to a report
by Islam et al. (32) in which introduction of a derivative
chromosome 9 was accompanied by loss of the recipient
chromosome 10 and hints at a potential method, albeit labor
intensive, for testing the haploinsufficiency of human tumor
suppressors in cases where appropriate data on inherited
mutations is not available.
For some haploinsufficient genes, expression profiling has

proved a useful tool for dissecting the biological pathways
affected by these genes (33). Recently, an attempt to identify
early molecular changes associated with dominantly inherited
predisposition to renal tumors via expression profiling (34)
found that heterozygosity for either the von Hippel-Lindau
tumor suppressor or the tuberous sclerosis complex genes
(including the haploinsufficient renal tumor suppressor gene
TSC2) significantly altered the expression profile of phenotyp-
ically normal renal epithelial cells in a gene-specific manner.
Examination of transcriptional profiles for cells bearing a
single mutation in a tumor suppressor gene may yield insight
into the haploinsufficient phenotype(s) of other tumor sup-
pressor genes, provided we develop appropriate guidelines

for distinguishing dominant negative mutations from
haploinsufficiency.
In humans and mice, however, the known haploinsufficient

tumor suppressors likely represent an underestimate of the true
number due to the inherent difficulty in reliably demonstrating
an absence of mutations in both alleles as well as a lack of
published experiments thoroughly examining the phenotype
of hemizygotes. In addition to haploinsufficiency, tumor
suppressor gene mutations can also lead to dominant negative
and gain of function effects as described next.

Recessive versus dominant alleles

Diploid organisms have two alleles for each autosomal gene.
In simple Mendelian genetics, a dominant allele confers a
phenotype in either the heterozygous or the homozygous
state whereas a recessive allele confers a phenotype only in
the homozygous state. Some of the earliest evidence for dom-
inant and recessive alleles was observed in flowering pea
plants. In Mendel’s case, for example he found that round
seed shape (R) was dominant and wrinkled seed shape (r)
was recessive. The history of science is fraught with myth,
however, and it is now thought that Mendel may have ‘rounded
the rough edges’ of his data in order to simplify his conclu-
sions. Thus, even from the beginning, the distinction between a
dominant and a recessive allele was fuzzy. Words and con-
cepts can help to clarify biological processes, but they can also
limit our understanding of those same processes by imposing
boundaries that do not exist in nature. The traditional view of
genetics is that most recessive alleles are non-functional or
have reduced functionality. However, the nature of dominant
alleles is less obvious.

True nulls versus hypomorphic recessive alleles

Researchers can begin to characterize the function of a gene
by the creation of an allelic series, that is a series of unique
mutations within the gene of interest. In an allelic series, a true
null allele has the strongest phenotype and is genetically indis-
tinguishable from a deficiency of the gene (that is a complete
absence of the chromosomal region encoding the gene).
By contrast, a hypomorphic recessive allele has reduced, but
not completely absent, functionality. Functionality for a

Table I. Continued

Gene Inherited human
cancer association

Sporadic human cancer association Haploinsufficient phenotype

Tsc2 Mutated in tuberous sclerosis
complex (231,232)

Mutated in pulmonary
lymphangioleiomyomatosis (233),
but rarely mutated in other sporadic
cancers analyzed to date
(reviewed in ref. 234)

Murine Pten-initiated prostate
adenocarcinoma (216)

Trp53 Mutated in Li-Fraumeni
syndrome (reviewed
in ref. 235)

Mutated in multiple sporadic
cancers (reviewed in ref. 236)

Murine sarcoma, osteosarcoma and
lymphoma (16); Murine urinary bladder
carcinoma (237); Human Li-Fraumeni syndrome (238)

Tgfb Mutated in Camurati-
Engelmann disease, a rare
bone disorder (239),
(reviewed in ref. 240)

Rarely mutated in sporadic
cancers analyzed
to date, although many
pathway components
are mutated (reviewed in ref. 241)

Murine diethylnitrosamine (DEN)-induced
hepatocellular adenoma, ethyl carbamate-induced
lung adenoma (17)

��Haploinsufficiency for suppression of tumors in vivo (as determined by accelerated tumorigenesis in heterozygote organism with clear retention of a
wild-type allele in the tumor) not clearly demonstrated.
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hypomorphic allele may be reduced, or in the case of genes
that are responsible for multiple functions, one function may
be affected while the others are preserved. Thus, even for
tumor suppressors that appear to follow Knudsen’s two-hit
model, functionality at a given gene dosage will vary depend-
ing on whether the inactivating mutation is hypomorphic or a
true null allele (Figure 2).
The distinction between a true null allele and a hypomorphic

allele can sometimes be difficult to make. For example, the
Apcmin mutation, which results in murine intestinal neoplasia
via a classic two-hit mechanism, is often thought to be a loss of
function allele. The Apcmin allele produces a truncated protein
of roughly 850 amino acids. The Apc1638T mutation, in which
the targeted mutation results in a stable but prematurely trun-
cated protein containing 788 amino acids more than the Apcmin

truncated protein, is homozygously viable (unlike either
Apcmin or Apc1638N) and has no observable tumor phenotype.
However, the germline Apc1638N, mutation in which almost
no Apc1638N protein product is produced, results in reduced
tumor multiplicity and increased tumor latency as compared to
the Apcmin allele. Thus, Apc1638N, a mutation in which almost
no protein is produced has a less severe phenotype than
Apcmin, in which a stable albeit truncated protein is produced.
So, is the Apcmin allele a gain of function allele? If so, then
why is the remaining wild-type allele still selectively lost in
most tumors from Apcmin/þ mice? One possible explanation is
that Apc is gene dosage-dependent. Thus impairment of APC
function might provide gastrointestinal epithelial cells with a
selective advantage, with loss of the remaining wild-type allele
providing a further selective advantage. Regardless, it is clear
that a more flexible paradigm involving both quantitative as
well as qualitative changes in function is required to fully
appreciate the spectrum of tumor suppressor gene action.

Dominant alleles of tumor suppressor genes

A haploinsufficient tumor suppressor mutation is, by nature,
difficult to distinguish from a dominant negative mutation.
In both cases, the wild-type allele is retained, although the
reason for retention is drastically different in each case. In
the case of a dominant negative mutation, the wild-type
allele does not need to be inactivated because the dominant

negative mutation serves that function, often by binding the
wild-type protein in non-functional complexes. In the case of
a haploinsufficient mutation, the wild-type allele is retained
because half the normal complement of wild-type protein is
insufficient for functionality. These two mutation types can
often be distinguished by factoring in other known traits of
the gene. For example, in the case of p27, it is known that
mice hemizygous for p27 show accelerated tumorigenesis
without loss of the remaining wild-type allele indicating that
one-half the normal complement of p27 is insufficient for
tumor suppression (15) and that p27 is haploinsufficient, as
opposed to inactivated by dominant negative mutation. In the
case of the Wilms’ tumor gene (WT1), however, it is known
that the WT1 protein dimerizes through the N-terminal
domain, indicating a potential mechanism for dominant neg-
ative action (35–38). Although milder cancer susceptibility
syndromes associated with WT1 mutation follow traditional
two-hit kinetics, a severe syndrome of genitourinary mal-
formations associated with susceptibility to Wilms’ tumor
and due to missense mutations in WT1 nuclear localization
signals, is thought to be caused by dominant negative muta-
tions of WT1 (39).

Pleiotropy

Many genes are pleiotropic, or in other words function in
multiple cellular processes, and some of these functions may
be more dosage-sensitive than others. For some phenotypes
examined, deletion of a single allele may have little effect,
while for other phenotypes deletion of a single allele of
the same gene may be tantamount to a null phenotype. For
example, p53 is a highly regulated gene with multiple inputs
and outputs and p53 may be haploinsufficient for some func-
tions, like inducing apoptosis (27) or maintaining genome
integrity (26), but recessive for other functions like transcrip-
tional regulation of certain genes. Quantitative phenotypic
analyses of hemizygotes will improve understanding of the
complex consequences conveyed by deletion of a single allele
of a gene. RNAi can be useful in creating an allelic series of
gene dosage as was demonstrated recently by Hemann et al.
(40) for Trp53 and may be useful in further differentiating
between minor changes in gene dosage. The spectrum of

Fig. 2. Tumor suppressor activitiy versus gene dosage. Wild type (þ/þ) activity represents 100% of diploid gene function and true null (�/ �) represents
complete loss of functionality. Haploinsufficient tumor suppressors exhibit a continuum of activity based on gene dosage with even 50% reduction sufficient
for phenotypic manifestation, i.e. accelerated tumorigenesis. While some genes may be less dosage-sensitive than others (in which a true threshold of close to
0% of normal gene product is required in order to detect a phenotype), we predict that most genes will be sensitive to dosage with some threshold that varies
on a continuum between 0 and 100%.
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phenotypes between full complement of a functional tumor
suppressor protein and complete deficiency for that tumor
suppressor gene can be broad, especially for genes that are
responsible for multiple functions within the cell. If one
accepts that the definition of a gene as ‘recessive’ or ‘haploin-
sufficient’ is dependent on the cellular context of that muta-
tion, then one can easily reconcile the perceived conflict
between haploinsufficient tumor suppressor genes and the
‘two-hit’ model of tumor suppressor gene inactivation. The
next sections discuss how the phenotypic penetrance of a
mutation can be context-dependent.

History of modifier genes

One of the first Drosophila mutants identified by Morgan was
a fly with truncated wings. The inheritance of ‘truncate’ was
difficult to reconcile with Mendelian genetics due to the incon-
stant penetrance of the truncated wing phenotype. As early as
1919, Muller and Altenburg recognized that the truncated
wing phenotype in Drosophila could be phenotypically modi-
fied by extragenic loci (41).
In subsequent years, genetic screens for both enhancers and

suppressors of a mutant phenotype have been used to identify
additional members of a signaling network. It is well known
that these modifier screens function best for identifying com-
ponents of pathways sensitive to gene dosage. This strategy
has been put to exquisite use in Drosophila. For example, a
hypomorphic allele of the receptor tyrosine kinase controlling
cell-fate choice in the Drosophila eye, sevenless (sev), pro-
vides just enough activity for most of the photoreceptor cells
to form. Further reduction of signaling, however, leads to
conversion of most of the photoreceptor cells to cone cells.
This sensitized background was used to identify mutations in
components of the receptor tyrosine kinase signaling pathway
as dominant enhancers of the cell-fate phenotype in the eye
(reviewed in ref. 42).

Modifiers of tumor suppressor gene mutations

Numerous enhancers of tumor suppressor gene mutations have
been identified. One of the first was the Mom1 or ‘Modifier of
Min’ locus on chromosome 4 in mice (43). Apcmin mice in a
Mom1 wild-type background, such as the AKR strain, are
resistant to intestinal polyposis whereas Apcmin mice in a
Mom1 mutant background, such as C57Bl6/J, develop hun-
dreds of intestinal polyps throughout the gastrointestinal tract.
Mutation in the Pla2g2a locus, which encodes a secretory
phospholipase, was eventually shown to be responsible for
50% of the enhanced intestinal polyposis of Apcmin mice in
the C57Bl6/J background (44). Among enhancers identified by
a candidate gene approach, deficiency in Mlh1 was shown to
accelerate the development of intestinal adenomas in Apcmin

mice (45). In addition to its intrinsic tumor suppressor activity,
p27 is one of the most promiscuous of these tumor suppressor
enhancers. p27 functions as an enhancer of mutations in mul-
tiple genes important for human cancer, indicating that p27
may be a nodal component of diverse pathways for tumor
suppression (46).
Suppressors of tumor suppressor gene mutations are known

as well. Dnmt1 is the most prominent of the three known
mammalian DNA methyl transferases. Intestinal tumor multi-
plicity in Apcmin mice heterozygous for a null allele of Dnmt1
(Dnmt1S/þ) was reduced by 60% compared to Apcmin mice

alone (47). Using a hypomorphic allele (Dnmt1N/þ), Cormier
et al. (48) demonstrated that the modifying effect of Dnmt1 on
Apcmin is independent of both Trp53 and Mom1 status. When
two distinct hypomorphic alleles of Dnmt1 were combined in
an Apcmin background, intestinal polyposis was completely
suppressed indicating that Dnmt1 is a very specific genetic
suppressor of tumorigenesis in Apcmin mice (49). Similarly,
deficiency for the human multidrug resistance gene, Mdr1,
results in significantly fewer intestinal polyps in Apcmin mice
(50). The existence of modifier loci have provided further
evidence that the phenotypic expression of a primary mutation
is highly dependent on multiple factors, including extragenic
loci, tissue type and environmental stress.

Mechanism of genetic modifier action

Genetic modifiers serve to enhance or suppress the original
mutation of interest via a number of different mechanisms. A
genetic modifier can affect a parallel or redundant pathway or
it can affect the localization of the mutant gene product of
interest, thereby either enhancing or suppressing its activity. A
genetic modifier sometimes takes the form of a stability factor
affecting the gene product of interest. Finally, a genetic modi-
fier can function as a downstream effector in a signaling
cascade that amplifies the activity of the mutant gene product,
as may be the case for p27.

Tissue-specific modifiers of tumor suppressor gene
mutations

Gene dosage-dependence of a tumor suppressor can vary not
only with the genetic background of the organism, but also
between tissues. In both DMBA-TPA-induced skin carcino-
genesis (51) and Apc mutant mice (22), p27 tumor suppression
shows a clear dosage-dependence, with p27 hemizygotes being
intermediate to p27þ/þ and p27�/�mice with respect to tumor-
free survival. In other tissues, however, this is not the case.
In the mammary gland, for example, p27�/� mice had longer
tumor latency in MMTV-neu transgenics as compared to
p27þ/þ mice (52). p27þ/� mice, however, showed reduced
mammary tumor latency as compared to p27þ/þ mice, as
might be expected based on the established tumor suppressor
function of p27. Counter intuitively, mammary tumors from
p27�/� mice had a reduced mitotic index as compared to the
mammary tumors in p27þ/� mice. Similar results were seen
in the prostate gland. In Nkx3.1-deficient, Ptenþ/� mice that
were also hemizygous for p27, prostate tumor progression was
enhanced whereas in Nkx3.1-deficient, Ptenþ/� mice that were
p27�/�, prostate tumor progression was inhibited (53). This
result was specific to prostate epithelium as other tumor types,
especially lymphoma, were enhanced in Nkx3.1-deficient,
Ptenþ/�, p27�/� mice. Thus, p27 haploinsufficiency is tissue-
specific. Whether the unexpected effects of p27-deficiency
seen in the mammary and prostate are due to extragenic
tissue-specificmodifiers or tissue-specific environmental expo-
sures remains to be seen.

Modifiers of human tumor suppressor genes

Evidence of tumor suppressor modifier loci has been less
forthcoming in humans than in mouse models, likely owing
to the controlled genetic background available in mouse
experiments (reviewed in ref. 54). Nonetheless, there is strong
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evidence that such modifier loci exist in humans as well. Some
of the strongest evidence comes from studying the variation in
disease incidence and severity in familial adenomatous poly-
posis (FAP) families segregating a mutation in APC (55,56).
Variations in the penetrance, number of polyps and the
existence of extracolonic manifestations have been observed
even within a given a family segregating a single mutation in
APC (reviewed in ref. 57). The identification of Mom1 as a
modifier of the Apcmin phenotype in mice precipitated efforts
to determine whether the human homologue of Mom1 modi-
fies the disease phenotype in human FAP patients. Early evid-
ence indicated a weak linkage between the MOM1 locus at
chromosome 1p35–p36 and modification of FAP phenotype
(58), however, subsequent investigation failed to support the
involvement of MOM1 (59,60). Whether MOM1 is capable of
modifying APC in a restricted subset of families or is merely a
mouse-specific modifier of Apc has yet to be determined.
Modelling of segregation of disease severity in FAP families
has indicated that a mixed model in which a single major
modifier locus acts in concert with multiple minor loci is
most likely to explain the intrafamilial variation in disease
phenotype (55), although these modifier loci remain to be
mapped. More recently, evidence from studies of human
FAP patients has indicated the possible involvement of
N-acetyl transferase polymorphisms in modifying disease
phenotype in APC carriers (56).
Putative modifiers of the familial breast and ovarian cancer

tumor suppressors BRCA1 and BRCA2 have also been identi-
fied. The earliest of these was the HRAS1 variable number of
tandem repeats (VNTR) locus located 1 kb downstream of
HRAS1 (61). Rare alleles of the HRAS1 VNTR increase the
risk of ovarian cancer penetrance in BRCA1 mutation carriers
by 2.11 times. The simplest explanation of this observation is
that these rare VNTR alleles somehow affect the expression
of HRAS1, a known proto-oncogene. The occurrence of the
VNTR in a non-coding region of the HRAS1 locus does not
allow a direct demonstration that HRAS1 is the tumor sup-
pressor modifier in question, however, and the true identity of
the BRCA1modifier gene at this locus has not yet been demon-
strated. More recently, polymorphisms of RAD51 (62–64), the
androgen receptor (reviewed in ref. 65) and TP53 (66) have
been implicated as modifiers of mutations in BRCA1 and/or
BRCA2 and a putative BRCA1 modifier locus has been map-
ped to chromosome 5q (67). In addition to APC, BRCA1 and
BRCA2, putative modifiers of tumor suppression by CDKN2A
(68), VHL (69) and NF1 (70) have been identified.

Summary

For the past 30 years, Knudsen’s ‘two-hit’ model has provided
a useful framework for interpreting the kinetics of tumor sup-
pressor gene inactivation. However the growing list of tumor
suppressor genes that exibit haploinsufficiency as well as
dominant negative mutations indicates a more complex view.
The Platonic view that genes function in a completely domin-
ant or a recessive fashion is oversimplified. Past models of
simple on/off switches for gene function do not account for the
pleiotropy of phenotypes observed for a given gene. Much as
rheostats have gradually replaced the ‘toggle’ light switches
of old, models of tumor suppressor gene function must now
encompass mutations that modulate activity without abolish-
ing it entirely. In addition, the phenotypic expression of a
primary mutation is highly dependent on multiple factors,

including genetic background, tissue type, and environmental
stress. Recessivity or haploinsufficiency are not absolutes but
are context-dependent. Future research will need to focus more
carefully on the phenotype of tumor suppressor gene mutation
heterozygotes and their pleiotropic effects. A more complete
understanding of tumorigenesis will only be achieved by a
detailed analysis of tumor suppressor gene dosage effects on
cellular phenotypes embedded within the complexity of the
organism.
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