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Xeroderma pigmentosum (XP) is an autosomal recessive disease,
which is characterized by susceptibility to ultraviolet light (UV)-
induced skin cancer. Among eight genes so far identified as respon-
sible for XP, XPA through XPG are involved in nucleotide excision
repair of DNA damage induced by UV as well as various chemical
carcinogens. Since this repair system removes a major UV photo-
product, the cyclobutane pyrimidine dimer, quite slowly from the
global genome, this lesion must be accurately bypassed during
replication by DNA polymerase h, encoded by the XPV gene. Re-
cent studies have revealed that each of these XP genes possesses
additional functions, some of which are concerned with other DNA
repair pathways and/or cellular DNA damage responses. Such dif-
ferential functions not only explain clinical heterogeneity among
different genetic complementation groups but also have implica-
tions for the promotion of carcinogenic processes in XP patients.

Introduction

Genomic DNA is highly susceptible to damage caused by its intrinsic
instability, endogenously produced reactive oxygen species and a wide
variety of environmental agents such as radiations and chemicals.
Some lesions, like double strand breaks, can directly lead to chromo-
some aberrations (e.g. deletion, translocation, etc.), whereas structural
changes in the bases often interfere with DNA replication in S-phase.
When replicating DNA polymerases are blocked by base lesions on
the template strand, the replication forks may collapse, thereby result-
ing in double strand breaks. In addition, depending on the type of
lesions, certain DNA polymerases are capable of elongating DNA
strands across damaged sites, and this translesion DNA synthesis
(TLS) is frequently associated with replication errors, giving rise to
mutations. To cope with such deleterious effects of DNA damage
promoting carcinogenesis, organisms are equipped with multiple
DNA repair systems (1,2).

Nucleotide excision repair (NER) is a versatile DNA repair system
that eliminates a broad spectrum of base lesions generated on one
strand, including ultraviolet light (UV)-induced cyclobutane pyrimi-
dine dimer (CPD) and pyrimidine (6-4) pyrimidone photoproduct
(6-4PP), as well as other bulky base adducts that can be induced by
numerous chemical compounds (1,3). Although these lesions do not

share common chemical structures, they are supposed to induce more
or less distortion of the DNA helical structure (4). It is known that
defects in NER are associated with several human autosomal reces-
sive hereditary disorders, such as xeroderma pigmentosum (XP). Pa-
tients suffering from XP exhibit extreme sensitivity to sun exposure
and a marked predisposition to skin cancer. Classical complementa-
tion analyses using cell fusion have identified eight genetic comple-
mentation groups in XP, for which the genes responsible are already
cloned (5) (Table I). Seven of these groups, XP-A through XP-G, are
associated with defective NER, while the remaining group, a variant
form of XP (XP-V), is proficient in NER but deficient in a specialized
DNA polymerase g (pol g) involved in TLS. This article overviews
how these XP gene products function in DNA repair and prevent
carcinogenesis.

Roles for XP gene products in NER mechanism

DNA damage recognition by XPC. As the first step of NER, base le-
sions are sensed and located, for which at least two distinct mechanisms
operate in parallel (1,3) (Figure 1). One of these NER subpathways, so
called global genome repair (GGR), can operate anywhere in the ge-
nome, whereas the other, transcription-coupled repair (TCR), is special-
ized to eliminate lesions from the transcribed strand of active genes.

The GGR subpathway is relevant as it can reduce probabilities of
DNA replication forks encountering lesions, thereby preventing chro-
mosomal aberrations and mutations. One of the XP genes, XPC, enc-
odes a basic protein (6,7) that is essential for damage recognition in
GGR (8–10). XPC protein exists as a heterotrimeric complex contain-
ing one of the two human orthologs of Saccharomyces cerevisiae
Rad23p (designated RAD23A and RAD23B) and centrin 2, which
is known as a centrosomal protein belonging to the calmodulin su-
perfamily (11,12). The yeast Rad23p and its mammalian homologs
interact with both the 26S proteasome (13–15) and multiubiquitin
chains (16–19), and the presence of this subunit significantly stabil-
izes the XPC protein in vivo (20,21) and in vitro (8,11,22,23). On the
other hand, centrin 2 has been shown to potentiate the damage rec-
ognition function of the XPC complex (12,22).

The XPC complex exhibits DNA binding activity with preference
for a branched DNA structure containing a junction between double-
and single-stranded regions (24). Thus, the DNA helical distortion
associated with local unwinding is a crucial factor for recognition
by XPC and the NER machinery (25,26), so that DNA damage is
even unnecessary for binding by XPC if the DNA contains some
artificial structure like a bubble (27). Recent biochemical studies have
revealed that XPC actually recognizes single-stranded configurations
in the undamaged strand opposite a lesion (28), and this notion has
been strongly supported by a structural analysis of the S. cerevisiae
XPC ortholog, Rad4p, bound to damaged DNA (29). These biochem-
ical properties seem to provide an important molecular basis by which
GGR can handle various, structurally diverse base lesions. This also
explains why GGR efficiency can vary depending on types of lesions:
for instance, UV-induced CPDs that induce only a small helical dis-
tortion (30,31) are poorly recognized by XPC (8,27,32) and are re-
moved much more slowly by GGR than 6-4PPs (33,34) that are much
more distorting and easily recognized by XPC.

UV-DDB/XPE promotes the damage recognition process in
GGR. Mammalian cells express another damage recognition factor
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that is specifically involved in GGR. UV-damaged DNA-binding pro-
tein (UV-DDB) was initially identified as a heterodimer consisting of
DDB1 and DDB2 subunits, the latter of which corresponds to the XPE
gene product (35–38). UV-DDB exhibits much higher binding affinity
and specificity than XPC for certain types of lesions, particularly UV-
induced photolesions (8,39). This is relevant for repair of CPD, since
XPC poorly detects CPD by itself. In fact, CPD repair is severely
impaired in fibroblast cells isolated from XP-E patients, while the
same cells appear to remove 6-4PPs quite efficiently (40,41). It should
be noted that UV-DDB never substitutes for the functions of XPC.
XP-C fibroblasts totally lack GGR activity regardless of lesion types
albeit the presence of functional UV-DDB (34,40). Furthermore, XPC
is absolutely required for reconstitution of in vitro NER reactions,
whereas UV-DDB is dispensable (42–44). XPC and UV-DDB phys-
ically interact (39) and, by using local UV irradiation technique, it was
shown that UV-DDB promotes recruitment of XPC to UV-damaged
sites in vivo (45–48). In addition to UV lesions, UV-DDB exhibits
affinity for some chemical adducts, abasic sites and bubble-like struc-
tures (49–51), although the biological meanings of such binding re-
main to be understood.

Recently, it was shown that UV-DDB further associates in vivo with
cullin 4A, Roc1 and the COP9 signalosome, which are known com-
ponents of ubiquitin ligase (52). Ubiquitin ligase seems to be activated
upon UV treatment of cells and, in turn, ubiquitylates XPC (39,53);
and in vitro, DDB2 and cullin 4A also were found to be polyubiquity-
lated in addition to XPC. The reported degradation of DDB2 induced
by UV irradiation is probably due to this autoubiquitylation
(45,54,55), whereas ubiquitylation of XPC in vivo appears to be re-
versible (39). When DDB2 is polyubiquitylated in vitro, UV-DDB
loses its damaged DNA-binding activity, whereas ubiquitylated
XPC still retains its DNA-binding capacity. Based on these findings,
we propose that ubiquitylation may assist UV-DDB to dissociate from
the lesion, thereby promoting the lesion transfer from UV-DDB to
XPC and the subsequent initiation of NER (39). Ubiquitin ligase
associated with UV-DDB also induces ubiquitylation of histones,
suggesting its roles in chromatin remodeling around the sites where
repair occurs (56,57).

Alternative transcription-dependent damage recognition pathway. In
the TCR subpathway, unlike GGR, the presence of damage is thought
to be sensed as a blockage of translocation by elongating RNA poly-
merase II (58–60). This process requires neither XPC nor UV-DDB,
so that TCR is normal in XP-C and XP-E cells (41,61). Conversely,
Cockayne syndrome (CS) patients belonging to genetic complemen-
tation groups A and B are deficient in TCR, but not in GGR (62). They
often manifest cutaneous photosensitivity but, unlike those with XP,
no obvious susceptibility to skin cancer has been reported for CS-A
and CS-B patients (2,63). However, it was also documented that both
Csa and Csb knockout mice are actually predisposed to skin cancer if

exposed to UV (64,65). Although the precise molecular mechanism
underlying TCR still remains to be understood, this pathway ensures
a rapid recovery of transcriptional activity and seems to prevent ap-
optosis induction (66–68).

Roles for XPB and XPD helicases in demarcation and verification of
damage. Except for XPC and XPE (DDB2) which are specifically
involved in GGR, the other NER-related XP groups (XP-A, B, D, F
and G) show defects in both subpathways, indicating that the later
steps of GGR and TCR are conducted by a common mechanism. After
damage recognition specific for each subpathway, DNA duplex must
be unwound around the lesion, a process that is accomplished by the
basal transcription factor IIH (TFIIH). TFIIH is a multifunctional
complex composed of 10 subunits (69), including the XPB and XPD
gene products, both of which share seven conserved motifs with ATP-
dependent DNA helicases (70,71). In GGR, TFIIH is probably recruited
through a direct interaction with XPC, for which XPB and the 62-kDa
subunit (p62) in TFIIH are responsible (10,72–76). TFIIH interacts also
with RNA polymerase II, CSA, and CSB, which may be important for
recruitment of TFIIH to the sites where TCR occurs (77–79).

XPB protein has a 3’ to 5’ helicase activity, whereas XPD helicase
has an opposite directionality (5’ to 3’) (80–82). Both helicase activ-
ities are essential for NER (83,84). It was shown that XPD helicase is
robustly stimulated by an interaction with the p44 subunit of TFIIH,
and several mutations identified in some XP-D patients compromise
this interaction (85). Biochemical studies revealed that translocation
on single-stranded DNA by the S. cerevisiae XPD homolog, Rad3p,
can be blocked by the presence of a lesion (86–88), implying that
helicases could play some role in a damage recognition process. Al-
though XPC can recognize and bind to artificial DNA structures like
a bubble, the in vitro NER system never incises DNA unless there is
a damaged base indeed present (27). This indicates that the presence
of damage needs to be verified after the binding of XPC (26,27,89),
and TFIIH helicases have been suggested to be involved in such
a verification process (4,90,91). It has been proposed that the XPB
and XPD helicases may scan individual DNA strands by moving in
the same direction. According to this model, either of the two heli-
cases may encounter a lesion, a mechanism that would allow direct
discrimination between the damaged and undamaged strands. How-
ever, it has not yet been excluded experimentally that the two heli-
cases may bind to the same strand and move in opposite directions to
further open the DNA duplex.

Pre-incision complex assembly. Following the initial unwinding of
DNA duplex by the TFIIH helicases, additional protein factors are
assembled to form a complex containing fully opened DNA, called
‘pre-incision’ complex (75,92–94). One such factor is the XPG gene
product, which belongs to a family of structure-specific

Table I. XP genes and functions of protein products

Gene Protein sizea Protein product and its complex formation Function

XPE/DDB2 428 (48 kDa) UV-DDB (DDBI–DDB2) GGR DNA damage recognition
associates with cullin 4A ubiquitin ligase

XPC 940 (106 kDa) XPC–RAD23–centrin 2 GGR DNA damage recognition

XPB/ERCC3 782 (89 kDa) TFIIH complex GGR and TCR DNA unwinding (helicases) damage verification?

XPD/ERCC2 760 (87 kDa) XPB–XPD–p62–p52–p44–p34–p8–cdk7–cyclin
H–MAT1 Transcription

Pre-incision complex assembly
promoter opening RNA pol II phosphorylation

XPG/ERCC5 1186 (133 kDa) XPG GGR and TCR Pre-incision complex assembly
associates with TFIIH 3#-endonuclease

XPA 273 (31 kDa) XPA GGR and TCR Pre-incision complex assembly damaged (kinked)
DNA binding

XPF/ERCC4 905 (103 kDa) ERCC1–XPF GGR and TCR 5#-Endonuclease

XPV/POLH 713 (78 kDa) Pol g TLS Replication bypass of CPDs

aNumber of amino acids (calculated molecular weight).
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endonucleases involving flap endonuclease-1 (95). Although XPG
protein functions as one of two endonucleases making dual incisions
in a later step of NER (96,97), it is required structurally for formation
of the fully opened DNA conformation apart from its catalytic func-
tion (98,99). A quite strong physical interaction has been demon-
strated between XPG and TFIIH, and impairment of this interaction
destabilizes the TFIIH complex, dissociating XPD and cdk-activating
protein kinase subcomplex (containing cdk7, cyclin H and MAT1
subunits) (72,100). Although these findings raise the possibility that
XPG may be recruited to damaged sites as a pre-assembled complex
with TFIIH, sequential assembly models have been proposed from
in vivo (10) and in vitro studies (75).

XPA protein is another XP gene product essential for assembly of
the pre-incision complex. XPA contains a zinc-finger domain and
exhibits a damaged DNA binding activity (101–104), but structural

studies revealed that this zinc-finger domain is also involved in a pro-
tein–protein interaction with replication protein A (RPA) (105). RPA
is an evolutionarily conserved, heterotrimeric protein complex that
binds and stabilizes single-stranded DNA regions (106). Not only
XPA but also RPA bind to damaged DNA with some specificity
(107–109), which is significantly enhanced by the interaction between
them (110). Although the XPA–RPA complex was originally thought
to be responsible for primary damage recognition, accumulated in
vivo and in vitro evidence shows that recruitment of XPA to lesion
sites occurs later than TFIIH recruitment (10,75). Although precise
roles for damaged DNA binding by XPA–RPA still remain to be un-
derstood, it was reported that purified XPA protein exhibits specific
binding affinities for some kinked DNA substrates, including a
three-way or four-way junction (111). This suggests that XPA may
recognize a certain intermediate conformation of DNA that could

Fig. 1. Model of the human NER mechanism. XP gene products are highlighted in red. UV-DDB may facilitate recruitment of XPC, not only to CPD sites but also
to 6-4PP sites, particularly when only a small number of lesions occur (32). See text for detail.
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emerge during action of TFIIH helicases. In concert with such DNA
binding, reported protein–protein interactions may facilitate recruit-
ment and assembly of XPA and RPA into the pre-incision complex
(74,112–114).

Dual incision by structure-specific endonucleases. After assembly of
a pre-incision complex containing fully opened DNA, two single-
strand breaks are introduced to the damaged strand by the ERCC1–
XPF complex and XPG, releasing an oligonucleotide containing the
damaged base(s). Among the factors required for dual incision,
ERCC1–XPF is the last one assembled into the complex (10,75,115),
and an interaction between ERCC1 and XPA seems to be crucial for
its recruitment (116–118). Although both ERCC1–XPF and XPG are
structure-specific endonucleases that cut DNA at a junction between
double-stranded and single-stranded regions, they have different po-
larities: ERCC1–XPF cleaves DNA at the 5’ boundary of a bubble
structure (96,119), whereas XPG makes an incision at the 3’ boundary
(96,97,120). Positions of the two incision sites can vary significantly
depending on types of lesions, but length of the excised oligonucle-
otide is almost constant, ranging between 24 and 32 nucleotides
(96,121,122).

Theoretically, ERCC1–XPF and XPG can make incisions in both
DNA strands of a bubble substrate, so that preceding discrimination of
the damaged strand must be important to avoid erroneous cleavage of
the undamaged strand. This might be accomplished through damage
verification by TFIIH helicases (and, presumably, XPA–RPA), which
may subsequently direct assembly of the pre-incision complex in the
correct orientation. Within this complex, RPA probably binds to the
undamaged strand and may guide the two endonucleases to their
proper positions (112,123).

DNA repair synthesis. After excision of the damage-containing oli-
gonucleotide, the resulting single-strand gap is filled by DNA poly-
merase. Biochemical studies using cell-free NER reactions revealed
that this DNA repair synthesis depends on proliferating cell nuclear
antigen (PCNA) (124,125). PCNA forms a homotrimeric clamp (126),
which is loaded onto the 3’ end of primers on template strands and
supports processive chain elongation by DNA polymerases. Loading
of the PCNA clamp requires a heteropentameric, DNA-dependent
ATPase complex, called replication factor C (127–129). Purified
PCNA, replication factor C and either DNA polymerase d or e have
been used successfully for reconstitution of the in vitro repair synthe-
sis, followed by strand rejoining by DNA ligase I (43,130).

It has been well documented that RPA bound to single-stranded
templates stimulates many DNA polymerase activities. Indeed RPA is
necessary not only for dual incision but also for subsequent repair
synthesis in vitro (130). RPA probably binds and protects the undam-
aged strand and, upon dual incision, may recruit PCNA and replica-
tion factor C (75,131,132). Interaction between XPG and PCNA has
been reported (133,134), which may also be involved in coordinating
the dual incision and repair synthesis steps.

XP variant gene and TLS

Among the eight complementation groups, XP-V was found to be
exceptional in that fibroblasts from those patients are proficient in
NER, but have some defects in DNA replication after UV irradiation
(135). In a cell-free simian virus 40 DNA replication system with
substrates containing a site-specific CPD, blockage of strand elonga-
tion at the lesion site was evident in XP-V cell extracts but not in
normal cell extracts (136). This finding led to identification of the
XPV gene product as a DNA polymerase that can bypass CPDs on
the template strand (137,138). This enzyme, designated as pol g,
shares significant amino acid sequence homology with S. cerevisiae
Rad30p and Escherichia coli DinB and UmuC (138,139), but not with
‘classical’ DNA polymerases. However, overall molecular structures
of those DNA polymerases have turned out to be quite similar (140).
The identification of pol g was followed by discovery of many new

DNA polymerases in mammals, a number of which possesses TLS
activity (141–146).

In general, replicative DNA polymerases exhibit such high fidelity
that, like RNA polymerases in transcription, they often stall at dam-
aged sites on the template strands (147). Since GGR of CPDs is
particularly slow even in NER-proficient cells as discussed above,
there is consequently a high probability for DNA replication forks
to encounter CPDs, once the cells are exposed to UV. Stalling DNA
polymerases need to be switched with TLS polymerases, but bypass
efficiency as well as fidelity of the individual enzymes differ from
each other depending on the type of lesions. For instance, pol g can
elongate a DNA strand across the template CPD quite efficiently and
accurately, while it can hardly bypass 6-4PPs (148–150). Other TLS
polymerases are either unable to bypass CPDs or highly prone to
misincorporation opposite the lesions (151–155). In XP-V patients
lacking pol g, CPDs are bypassed by other TLS polymerases that
are less accurate, thereby leading to a high incidence of misincorpo-
ration (Figure 2). DNA polymerase f may be involved in such a pro-
cess, as it has been implicated in UV-induced mutagenesis (156–159),
whereas a ‘two-polymerase’ model has also been proposed in which
6-4PP could be bypassed through sequential actions of pol g and pol f
(160). Once replication errors occur at UV-damaged sites, mutations
are fixed either by the following NER or by the next round of repli-
cation. Because low fidelity is a common characteristic of TLS poly-
merases (153,161–163), the length of strand elongation by pol g must
be minimized to avoid superfluous mutations by switching back to
replicative polymerases. This seems to be regulated at several levels,
including low processivity of the enzyme itself (150,164), altered
binding affinities for different template–primer structures (165) and
interaction with a monoubiquitylated PCNA clamp (166,167).

Additional functions of the XP genes

As discussed above, each XP gene product plays an essential role in
either removal of or replication bypass across UV-induced photole-
sions, explaining why XP patients are susceptible to UV-induced
mutagenesis and carcinogenesis. However, evidence has accumulated
that shows almost all of the XP factors have additional functions that
appear to have further implications in carcinogenesis and/or other
pathological consequences.

Transcriptional function of TFIIH. The most obvious examples of
such multiple functions are found in XPB and XPD, both of which
are essential components of the basal transcription factor TFIIH
(80,81). Like unwinding of DNA duplex at damaged sites, TFIIH is
involved in opening promoter regions prior to the initiation of RNA
synthesis (168). Although both XPB and XPD helicases are essential
for NER, the XPD helicase activity seems to be dispensable for tran-
scription (84,169).

Since TFIIH is involved not only in both GGR and TCR but also in
transcription, clinical outcomes caused by mutations in the XPB and
XPD genes are quite variable (170,171). Within the TFIIH complex,
XPD structurally connects the cdk-activating protein kinase complex
with the core of TFIIH (172). Some mutations in the XPD gene
compromise phosphorylation of nuclear receptors and other transcrip-
tional activators by cdk7 in TFIIH, thereby affecting transactivation of
the corresponding hormone-responsive genes (173–177). This may
explain, at least partly, some clinical phenotypes of XP-D patients,
such as the developmental defects and hypoplasia of the adipose
tissues.

In addition to typical XP, there are a few cases of XP-B, XP-D and
XP-G patients with combined features of XP and CS (63). As men-
tioned above, XPG strongly interacts with and stabilizes the TFIIH
complex (72,100), and may be involved in initiation of TCR (178).
Taken together with the cases of CS-A and CS-B, the CS features of
these XP/CS patients (e.g. severe neurological dysfunctions) are prob-
ably due to defects in TCR (and possibly in transcription), in which
involvement of some oxidative base lesions has been implicated. Fur-
thermore, some of the XPB and XPD mutations have been shown to
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cause trichothiodystrophy (TTD) (170,179). Although TTD patients
often exhibit sun sensitivity, the most characteristic symptom of this
disease is brittle hair and nails caused by marked reduction in content
of cysteine-rich matrix proteins. Physical and mental retardation as
well as ichthyotic skin are also commonly associated with TTD,
whereas development of skin cancers, as in CS, is usually unassoci-
ated. It has been recently shown that another repair deficient form of
TTD (called TTD group A) is caused by mutations in the GTF2H5
gene encoding one of the TFIIH subunits, TFB5 (p8) (69). Regardless
of the affected genes (XPB, XPD or TTDA), fibroblasts from those
TTD patients exhibit not only a severe defect in GGR but also greatly
reduced levels of TFIIH (69,180). Thus, some defects in transcription
in addition to NER deficiency have been implicated in TTD.

XP proteins involved in epigenetic control. In higher organisms,
methylation of cytosine in DNA comprises an important epigenetic
control mechanism, suppressing gene expression (181). The DNA
methylation is induced and maintained through action of a family
of enzymes called DNA methyltransferases. On the other hand,
DNA can be ‘passively’ demethylated during replication, whereas
molecular mechanisms underlying ‘active’ demethylation still remain
to be understood (182). Recently it has been reported that the growth
arrest and DNA damage-inducible protein 45a (Gadd45a) is involved
in this active demethylation process (183). Expression of Gadd45a is
induced in a p53-dependent manner in response to DNA damage as
well as other various cellular stresses, and its functions have been
implicated in DNA repair, damage checkpoints, centrosome duplica-
tion, and so on (184,185). Intriguingly, XPG and XPB (probably as
part of the TFIIH complex) seem to be involved in the DNA deme-
thylation induced by overexpression of Gadd45a. It is proposed that
NER may serve as an active demethylation system excising the oli-
gonucleotide containing a 5-methylcytosine, although evidence for
participation of the whole repair machinery is lacking. If this were
the case, XP patients (except for XP-V) might have defects not only in
NER but also in inducing expression of a certain set of genes in re-
sponse to DNA damage.

Stimulation of BER: implications in spontaneous mutagenesis. Many
base excision repair (BER) substrates including oxidative base lesions
poorly distort DNA duplex, so that they are usually not recognized by
NER. However, some XP gene products have been shown to interact
with and stimulate specific DNA glycosylases, initiators of BER,
beyond their functions in NER.

The first example was reported for XPG, which interacts with hu-
man NTH1 protein (186). Human NTH1 is a DNA glycosylase that
initiates BER by removing thymine glycol as well as other oxidized
pyrimidine bases (187,188). This does not depend on the endonucle-
ase activity of XPG, whereas XPG seems to promote binding of
human NTH1 to the DNA substrates. Another XP protein related to
BER is XPC, which was shown to interact with thymine DNA glyco-
sylase (TDG) (189). TDG initiates BER by removing T (or U) from
a G/T (or G/U) mismatch that can arise from spontaneous deamina-
tion of 5-methylcytosine (or C) (190). Thus, TDG is supposed to
contribute to suppression of spontaneous mutations, although direct
in vivo evidence for this is lacking. Unlike the stimulation of human
NTH1 by XPG, XPC seems to enhance enzymatic turnover of TDG
by promoting dissociation from its own product abasic sites
(189,191). More recently, it has been reported that XPC also stimu-
lates in vitro activity of hOGG1, which is mainly responsible for re-
moval of a major mutagenic oxidative lesion, 8-oxoguanine (192). In
this case, XPC appears to promote both DNA binding and turnover of
hOGG1. This is in line with the recent report that XP-C fibroblasts are
deficient in transcriptional reactivation of oxidized plasmid DNA
(193). Furthermore, defective expression of XPC can somehow cause
hypersensitivity to ionizing radiation, although this seems to be due to
the impaired non-homologous end-joining pathway of double-strand
break repair (194).

Given that the BER activities are compromised in some XP pa-
tients, elevation of spontaneous mutation frequency (derived from
deamination and/or oxidation) may make certain contributions to
the promotion of carcinogenesis in skin in addition to UV-induced
mutations. Although some endogenously produced oxidative DNA
lesions, like 8, 5#-cyclopurine 2#-deoxynucleosides, are recognized

Fig. 2. Role of pol g in suppression of UV-induced mutagenesis. When replicative DNA polymerase stalls at CPD, pol g assumes strand elongation, incorporating
the correct bases opposite of the lesion (left). In XP-V patients lacking pol g, CPD is bypassed by other TLS polymerases that are more prone to misincorporation
(right). Once such mismatched CPDs occur, they are more easily recognized by NER than normal CPDs (14), thereby promoting fixation of mutations.
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by NER and have been implicated in occurrence of cancer and neu-
rological degeneration in XP (195,196), the impaired BER activities
may be responsible, at least partly, for development of internal tumors
in XP patients (197). Elevated spontaneous mutagenesis as well as
development of lung tumors was also observed in Xpc-deficient mice
(198,199).

Checkpoint and apoptosis functions of XP genes. Besides removal of
lesions per se, checkpoint controls play crucial roles in coordinating
DNA repair, cell cycle arrest and apoptosis, thereby contributing to
prevention of carcinogenesis through maintenance of genome integ-
rity and exclusion of abnormal cells. The ataxia telangiectasia-
mutated gene and its related gene ATR encode protein kinases, both
of which belong to a family of phosphatidylinositol kinase and are
involved in signaling pathways of DNA damage checkpoints (200).
Particularly, the ataxia telangiectasia mutated and Rad3-related (ATR)
kinase has been shown to be activated by various treatments causing
DNA replication arrest, for instance, with DNA-damaging agents in-
cluding UV as well as with inhibitors of DNA synthesis. An RPA-
coated, single-stranded DNA region, which can be generated by
stalling DNA polymerases, has been supposed to recruit ATR through
interaction with the ATR-interacting protein (201–203). The activated
ATR then phosphorylates target proteins including the main down-
stream effector Chk1 kinase.

A recent report has revealed that the ATR signaling pathway is
compromised in XPA-deficient cells during S phase, as shown by
translocation of ATR-interacting protein to subnuclear UV-damaged
areas as well as by UV-induced phosphorylation of Chk1 and RPA
(204). Similar defects were not observed in other NER-defective XP
and CS cells, suggesting that XPA may be somehow involved in
S phase checkpoint signaling apart from its NER functions. Another
study has indicated that, in G0/G1 and G2/M phases, the UV-induced
phosphorylation of Chk1 and p53 depends on damage recognition by
GGR, but not by TCR (205). Intriguingly, in yeast S. cerevisiae, the
XPA homolog Rad14p interacts with Ddc1p (206), a component of the
heterotrimeric checkpoint complex (a counterpart of the Rad9–Rad1–
Hus1 complex in Schizosaccharomyces pombe) that shows a structural
similarity to the PCNA clamp. On the other hand, UV-induced ATR
activation is apparently enhanced in XP-V cells (204), possibly be-
cause their defect in TLS causes a delay of replication, thereby giving
rise to more single-stranded regions after UV irradiation.

It has been well documented that p53 tumor suppressor plays key
roles in DNA damage-induced checkpoints and apoptosis. Expression
of the two human XP genes involved in the GGR damage recognition,
XPC and DDB2, is positively regulated by p53 (40,207,208). Once
p53 function is compromised, therefore, GGR activity might be re-
duced, which could further facilitate accumulation of mutations and,
consequently, a carcinogenic process. In mice, however, the DDB2
gene does not respond to p53 transactivation because of some muta-
tions in its promoter sequence (209), whereas Chinese hamster cells
are even deficient in the DDB2 expression per se (41,210). These facts
may explain the reduced GGR capacity of rodent cells, particularly
removing UV-induced CPDs. In addition, it has been reported that
a loss of functional DDB2 results in a severe decrease in p53 levels
and in prevention of UV-induced apoptosis (211,212). This could re-
sult in anomalous survival of damaged cells and also contribute to the
promotion of carcinogenesis. UV-DDB has been reported to interact
also with the transcription factor E2F-1 (213,214), the c-Abl tyrosine
kinase (215) and the histone acetyltransferases CBP/p300 (216), fur-
ther suggesting its roles in DNA damage-responsive transcriptional
regulation and/or chromatin remodeling processes.

Roles for ERCC1–XPF in other repair pathways. Among the NER-
deficient XP groups, XP-F cells are quite unique, because they show
an extremely high sensitivity to chemical compounds, such as cis-
platin and mitomycin C, which can induce interstrand crosslink le-
sions (ICLs) (217,218). In bacteria, a molecular mechanism for repair
of such ICLs has been proposed, where the whole NER machinery

(the UvrABC system) is involved in making the first dual incision in
either strand at the cross-linked site (219). Although the precise mech-
anism of ICL repair in eukaryotes still remains to be established,
ERCC1–XPF endonuclease appears to have functions beyond NER.
Notably, at least in vitro, ERCC1–XPF can make an incision within
a DNA substrate that mimics the structure of a replication fork en-
countering an ICL (220), so that it may be capable of initiating ICL
repair in a replication-coupled manner, independently from other XP
factors. Alternatively, ERCC1–XPF may be required for a process
repairing double-strand breaks, which can be generated when repli-
cation forks stall at ICLs (221). In line with such roles in ICL repair,
ERCC1-deficient mice are known to exhibit very severe phenotypes
including hematopoietic defects (222), which are not commonly as-
sociated with XP. Instead, such defects are characteristic of Fanconi
anemia (223,224), another human cancer-prone syndrome, and cells
from the patients with this disease show hypersensitivity to ICL-
inducing agents (225).

Some types of DNA recombination and double-strand break repair
also require functions of ERCC1–XPF. Its counterpart in S. cerevisiae,
Rad1p–Rad10p, was shown to be involved in a certain pathway of
double strand break repair called ‘single-strand annealing’ (226).
ERCC1–XPF seems to be required for a similar process in mamma-
lian cells (227) and plays an essential role in homologous gene target-
ing in mouse embryonic stem cells (228). Furthermore, in mammalian
cells, ERCC1–XPF has recently been identified as a component of the
telomeric TRF2 complex, thereby involved also in regulation of telo-
mere integrity through its endonuclease activity (229,230). It has been
proposed that an overexpression of TRF2 may result in telomere
shortening through recruitment of ERCC1–XPF, thereby leading to
premature aging and a cancer predisposition (231). Reduced DNA
repair capacity caused by sequestration of ERCC1–XPF by telomeres
may also contribute to manifestation of senescence features observed
in the TRF2 transgenic mice, since a new progeroid syndrome and its
relationship to DNA damage have recently been described with a pa-
tient carrying a particular missense mutation in the XPF gene and also
with ERCC1–XPF-deficient mice. (232)

TLS polymerases in somatic hypermutation and homologous
recombination. Unlike replicative DNA polymerases, pol g and other
TLS polymerases commonly show quite low fidelity on undamaged
DNA templates. In some cases, such ‘error-prone’ synthesis by TLS
polymerases is vitally utilized to create sequence variability of spe-
cific genes. A most remarkable example is found in somatic hyper-
mutation in the immunoglobulin genes (233,234). This process is
supposed to be triggered by deamination of cytosine to uracil, which
is catalyzed by an enzyme called activation-induced cytidine deami-
nase (235,236). The resulting U/G mismatch then can be processed by
BER involving uracil DNA N-glycosylase (237), and misincorpora-
tion by TLS polymerases may occur during the DNA repair synthesis
and/or a replication bypass across an intermediate abasic site
(238,239). Accumulating evidence indicates that pol g is indeed in-
volved in somatic hypermutations in the immunoglobulin genes, par-
ticularly at sites containing an A–T base pair (240–245). Although
initiation of somatic hypermutation must be a strictly regulated event,
it remains to be elucidated to what extent such low fidelity poly-
merases can be involved undesirably in NER, BER and other DNA
transactions, thereby giving rise to mutations. In this regard, it is also
notable that pol g has been recently shown to be involved in homol-
ogous DNA recombination (246,247).

Conclusions

As discussed above, the molecular mechanisms underlying human
NER and the functions of seven XP proteins (XPA through XPG)
therein have been elucidated to a considerable extent. However, in vivo
regulation of this repair system has not yet been addressed exten-
sively. For instance, both XPC and UV-DDB play key roles in a dam-
age recognition process for GGR, but it remains to be elucidated how
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these factors actually survey for occurrence of DNA damage through-
out the huge genome. Do they perpetually move around within the
nucleus and find lesions by chance? A mechanism that systematically
scans along DNA seems more attractive, although evidence is lacking
for the presence of such a mechanism. In this regard, involvement of
chromatin structure and cell cycle regulation would need to be con-
sidered. Accumulating evidence indicates that in vivo NER processes
may involve specific histone modifications like phosphorylation (248)
and ubiquitylation (56,57,249) as well as chromatin remodeling fac-
tors such as CAF-1 (250,251).

Since CPD is removed by GGR quite slowly even in normal cells,
the accurate replication bypass across this lesion is particularly im-
portant to prevent UV-induced mutagenesis. This is accomplished by
XPV (pol g) with a highly efficient and accurate bypassing activity
across CPD. Depending on the types of lesions that block replication,
however, correct TLS polymerases must be chosen, and such a selec-
tion mechanism has been the interest of many researchers. Since the
hypermutability of TLS polymerases seem to be vitally utilized in
some cases, it is important to understand how participation of these
enzymes is regulated in vivo.

Extra functions, beyond NER or TLS, of XP gene products differ
from each other, explaining some of the heterogeneity of clinical
phenotypes among different genetic complementation groups. Some
of those functions, especially those related to DNA repair and cellular
damage responses, are making it much more complicated than before
to understand how the defect of each XP gene affects development of
cancers and other clinical features. It would be also important to
elucidate possible association of the polymorphisms of the XP genes
with altered functions and a cancer risk (252). Further studies on the
XP proteins, such as identification of new interacting partners, may
unveil additional functions that would provide novel insights to the
molecular pathology of this disease.
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